MATH 251, Mariano Echeverria

Problems Integration of Scalar Fields

This material corresponds roughly to sections 15.1, 15.2, 15.3, 12.7, 15.4, 15.6 and 16.4
in the book.

Problem 1. Consider

I :/ cos vy — zdA (1)
R

where R is the region determined by the curves y =z + 1, y = 22 + z. Find I
using the change of variables u =z, v=\y —z

The region of integration on the xy plane is

Figure 1: Region of integration zy plane

We have to find how the region transforms under the change of variables. Notice that

v=y—z (2)



SO

y:122+x:v2+u

which means that the straight line

y=z+1
becomes
v 4u=u+1
In other words, we get
2 _

ve =1
which implies

v=1

since v = /y —x > 0.

The parabola y = 22 + = becomes v? + u = u? + u or v = +u. Therefore the region of

integration with respect to the uv plane
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Figure 2: Region of integration uv plane

The Jacobian of this change of variables is
Ly Ty | _
Yo Yo |

J:

so the integral is

I= /01 (/_chos(v) QUdu> dv = 8 cos (1) — 4sin (1)

where integration by parts was used.

% =2v

Problem 2. Find the volume of the solid of revolution given by the equation

2?2 > z? + 42, which is contained inside the sphere 22 + 3% + 22 =1

The surfaces z2

=22 4 y? and 22 + 3% + 22 = 1 are shown in the next figure
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Figure 3: Sphere

where the equations become cos? § = sin?6 , r = 1

[recall that 6 is the angle measured with respect to the z axis|. By symmetry with respect

b

We will use spherical coordinates

[the 2z plane| to find the limits with respect

to the angle ¢ we can look at a cross section

tor,0.



Figure 4: Intersection of the sphere-cone with the plane y =0

From this figure we can see that the limits of integration are 0 < ¢ <27, 0<6 < 7,
0 <r < 1. Hence the volume is

21 % 1 An 1
V= 2/ / / r? sin Odrdfdy = — (1 — ) 10
o Jo Jo 773 V2 (10

Problem 3. Prove Newton’s Shell theorem for the gravitational potential.
Namely, the gravitational potential created by an object with constant density
py and spherically shaped on a point (0,0, zg) is

///\/x2+;GijZO)2 (11)

where, dm = pysdvol, G is Newton’s universal gravitational constant, and the
region of integration is the interior of the sphere of radius R centered at the
origin. Use spherical coordinates to show that this integral equals

(12)

—%TFGpM (SR2 — z%) if0<z<r
—ng/[ if r < zg

We use spherical coordinates. Since dm = pp;dV we must compute

G /2“/ / r2 sin Odrdfdy (13)
M V/72sin? 0 + (rcos 6 — z9)2

The integrand does not depend on ¢ so we can integrate this variable first. We can also
change the order of integration and find

or /R/W r2 sin Odfdr (14)
—27
M o Jo /12 —2rzcosf+ 22




Now we make the change of variables u = 72 — 2rz cos § + zg , du = 2rzp sin df and we
end up integrating

(r+20)? rdudr o2 R
—GpM//( ——ZOGpM/O (r+ 20| —|r — zo)rdr  (15)

—2z0)?2

We may assume zg > 0 so we must analyze the cases 0 < 2o <7, r < 2.
If 0 < 29 <7 then

—Z—WGpM (/OZO (r+ 20 — (20 — 7)) rdr + /R (r+20— (r — zo))rdr> (16)

ZO Z0
4r 2, R 4w 2 20,9 o
=—— d dr | = —— - 4+ = — 1
ZoGpM</o r r—l—/ZO 20T r) ZOGpM(3+2(R zo) (17)
2
= —37Gpu (3R* - 23) (18)
If r < zg then
4 R R GM
——TFGpM/ r2dr = —fG PM— = (19)
20 0 3 20

Problem 4. Consider the Gaussian integral

Ia://De@QJFyz)d:rdy (20)

where D is the disk 22 + 32 < a?
a) Use polar coordinates to show that I, =7 (1 — e’az).

b) Find [;* e~*"dz using the value of I Je eV dady .

a) In polar coordinates we find that

27 a 9 a 5
1, :/ (/ e " rdrd@) = 277/ e " rdr (21)
0 0 0

Using the change of variables u = —r? |, du = —2rdr we must compute

2
1 o wj—a?® __ —a?
—27r<2>/0 e'du = —m e"|, —7T(1*€ ) (22)

// 67’”27y2dxdy :/ / efxzenydydx (23)
R2 —o0 J —0c0

) ) ) ) ) ) 2
= </ e ” dx) </ eV dy) = </ e " d:v) (24)

b) Observe that



Taking the limit @ — oo in part a) we obtain

//R? eV dady = (25)

/_ ) e dy = /7 (26)

SO

Example 5. Find the average value of the temperature T(z,y,2) = 22 +y? — 22
inside the interior of the region bounded by the surfaces 2z = 2% + 32, 22 +
y> —22=1and z =0, z = 3. You can use that the average value of T, denoted

< T >, is given by
Tdv
<T> fffR

Vol(R) 27)

Using cylindrical coordinates the equations of the surfaces are 2z = r2 | r2 =1+ 22 .
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Figure 5: Paraboloid-hyperboloid

On the xz plane the cross sections of the surfaces are

Figure 6: Intersection paraboloid-hyperboloid with the zz plane



The limits of integration in cylindrical coordinates become

0<0<2r 0<2z<1 V2z2<r<+y1+22 (28)

First we compute the volume

2 pl pV/1422 2 pl 7‘2
\% z/ / / rdrdzd0 :/ / —
0 0 JV2z 0 0o 2

2 1 2 1
:;[:bé(z—DQMm%:éA (-1 an=7 (30)

We also need to compute

V1422
d=df (29)
V2z

o2l /1422 1o/, r2 Vitz?
///TdV = / / / r (7"2 - zz) drdzdf = 271'/ < - z2> dz
o Jo Jvaz o \4 2 /12
(31)
L(1+22)7 ,1+22) (227 ,(22)°
-9 — 2 — 2 d 2
TI'/O ( 1 z 5 1 +z 5 z (32)
T [ 2 4 2 4 2 4 T (! 4 2 T (7
25 (1+2z + 25— 22— 22" — 4z +82)dz=§ (72 — 4z —I—l)dz:§ 573
0 0
(33)
Therefore the average value
167
) =~o (34)

Problem 6. Consider the region R determined by the surfaces z = /22 + 42,
z = 2—x?—1y? . Write the integral for the volume of this region using cylindrical
coordinates, first using the order of integration dzdrdf , and then using drdzdf.
You do not need to compute the value of the integral!

The surfaces are shown in the following figure
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=17,z =2—1r2 With respect to

Using cylindrical coordinates the equations are z

the zz plane the cross section looks like



Figure 8: Intersection cone-paraboloid with the xz plane

Both surfaces intersect when r = 2 — r2 | that is, z = » = 1. To find the integral in

the order dzdrdf notice that

0<0<2r 0<r<1 r<z<2-72

2 pl p2—r2
V= / / / rdzdrdf
0 0 r

To find the integral in the order drdzdf notice that

So the volume is

0<0<2r 0<2<2
In this case the r bounds depend on z

0<2z<1 0<r<z
1<2z<2 0<r<y2—z2

2 1 z 2 2 V2—z
|4 :/ / / rdzdrdt9+/ / / rdzdrdf
o Jo Jo o J1 Jo

Therefore

(35)

(36)

(38)

(39)

Problem 7. Consider the double integral I = [ f?’“os(h) flz,y)dydz.

sinz
a) Draw the region of integration R.

b) Change the order of integration to dzdy. Do not compute the integral.

a) We have 0 < z < 7, sinz <y < 3+ cos (2z). The region of integration is

10



Figure 9: Region of integration

b) To change the bounds notice first of all that 0 < y < 4. For the bounds in z we must
break the region into the pieces determined by the inequalities 0 <y < 1,1 <y < 2,
2<y<4.

We also use the fact that sin (7 — «) = sin (@) , cos (2r — @) = cos («). If we consider
arcsin v as a function with domain between 0 and 5 we must have

0<y<1l O0<Lz<Larcsiny w—arcsiny<z<m (40)
1<y<2 0<z<nw (41)

1 1
2<y<4 ngggarccos(y—?:) W—iarccos(y—?))gxgﬂ' (42)

Therefore the integral is

arccos(y—3)

1 arcsiny 1 arcsin y 2 ™ 4 — 4 ™
/ / fdxdy+/ / fda:dy—i—/ / fd:cdy—i—/ / fd:cdy—i—/ / fdxdy
0 J0 0 Jo 1 Jo 2 Jo o Jrorrecosv=s)

(43)

Problem 8. Consider the integral I = [ [ [, Iy;;f dxdydz, where T is the region
inside the first octant (x,y, z > 0) between the plane x+y+2z = 2, the zy plane,
and the vertical “walls” determined by the trapezoid given by the equations
r+y=1,z+y=2,y=0,y =2 . As a suggestion, use the change of variables

_ v . vw _ _
T=10r Y= Tqqr 2= U— 0.

First of all the plane x + y 4+ z = 2 intersects the plane xy when z = 0, that is, when
x +y = 2. Therefore on the zy plane the region of integration looks like

11



Figure 10: Trapezoid

vw
14w’

Using the change of variables z = -, y = z = u — v the line x +y = 1 becomes

1+vw ﬁww =1, thatis, v = 1.
Similarly, the line z + y = 2 becomes v = 2.

The line y = 0 becomes 2 = 0, observe that v # 0 since © # 0 so the bound

14w
corresponds to the line w = 0.
Similarly, the line y =z becomes 7, = %, or w =1.

Finally, the plane z = 0 becomes v = v , while the plane x + y + z = 2 becomes

U vw . .
o 1+w—|—u—v—2oru_2.

Therefore the bounds end up being

1<v<?2 0<w<1l v<u<?2 (44)

Now we compute the Jacobian

1
Ty Ty T 0 T+w _(1+vw)2
_ _ 14w—
J(u, v, U)) = ZZ/u ZU Zw =10 H—Lw % ( (Irfw)g)> (45>
wotv fw 1 -1 0
0o 1 -1
=0 w 1= (46)
A4+w’ |1 -1 o0 (1+w)
At the same time,
wy+yt  yety e w(l+w)’
x3 x3 ( . ) v
1+w
Therefore the integral we must compute is
2 1 p2 2 rl 2 w2 !
/ / / wdudwdv = / / w (2 —v)dwdv = / (2—v) —| dv (48)
1 Jo Ju 1 Jo 1 2 o
1 [? 1 2\|P 1 3} 1
== 2—v)dv==(2v— — ==(2—=]=- 49
e (o) -2 (m3) - w

12



Problem 9. Consider the region determined by the surfaces 22 + y> + 22 =4,
2% +y? = 3z,

a) Write an integral for the volume of this region using cylindrical coordi-
nates, using the order dzdrdf.

b) Write the same integral now using spherical coordinates in the order
drdpdf , where ¢ represents the angle which starts from the 2 axis.

The region of integration corresponds to

xN2 -3*z+y"2=0

Figure 11: Region of integration paraboloid-sphere

a) With respect to the cylindrical coordianates z = rcosf, y = rsin 6 the equation of
the sphere becomes 72 + 22 = 4, while the paraboloid can be written as r?> = 3z. A cross
section of these surfaces is

13



Figure 12: Region of integration on the zz plane

Using the order dzdrdf we have
0<60<27r (50)
The surfaces intersect when 2 + %r‘l =4, that is r = /3 . Therefore

0<r<v3 (51)

Finally,

7,2

ggzg 4—r? (52)

In this way the volume becomes

2 /3 pNVA—12
V= / / /2 rdzdrdf (53)
o Jo Jz£

b) Using spherical coordinates x = rsingpcosf , y = rsingsinf, z = rcosp, with
respect to the order drdpdf we must have

0<6<2r (54)

From the previous figure we find that

0<p<? (55)

To find the bounds for r the surfaces in spherical coordinates can be written as r = 2 |

2 2 _ _ 3cosp
resin® o = 3rcosyp or r = e
At the same time the surfaces intersect when 2 = ?;icn%sj. This last equation can be

rewritten as 2 (1 — cos? <p) = 3cosp or 2cos? ¢ + 3cosp — 2 = 0, which we rewrite as
(2cosp — 1) (cosp+2) = 0. Thus cosp = % or cosp = —2 , and since the last one is

14



impossible we conclude that ¢ = 5. Therefore the bounds of integration

so the volume is

o T 2 o 3 e e
V= / / / r? sin drdedd + / / / 12 sin pdrdedd (57)
o Jo Jo o Jz Jo

o

IA A
IA A

7 0<r<2
To0<r< e (56)

sin“ ¢

P
P
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Problem 10. Make the change of variables u = xy, v = % to find the volume of
the solid bounded by the surfaces z=z+y, 2y =1, 2y =2, y =2,y =22, 2=0
(z >0, y>0).

The region of integration on the zy plane is

Figure 13: Region of integration zy plane

//R(w—i—y) dydx (58)

With respect to the change of variables we have

We must do the integral

1<u<?2 1<v<?

(59)
The Jacobian has the property that J(u,v) = ﬁ where
Hay=| e W =] b =22 (60)
In this way
1
J = 61
(o) = o (61)

15



Since y = Juv , x = \/g the integral becomes

[ () = [
~ 1 (2va-1) /12 (2 + 0} do

Problem 11. Consider the following triple integral

I:/ / / f(z,y, z)dzdydx (64)
f% —4/ %,mz 0

a) Draw the region of integration.

b) Write I in spherical coordinates, using the order of integration drdpdd,
and the order dpdrdf . In both cases 0 is the angle that starts from the x axis.

a)Theboundsare—% <z< %,—1/%—902 <y<y/3-22,0<2</1—a2—y2
and the region of integration is

16
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Figure 14: Sphere-cylinder-plane

With respect to spherical coordinates x = rsin @ cosf, y = rsin@sinf, z = r cos ¢ the
bounds of the integral can be written as

! (65)

2 1.2
o — _ —

So a cross section looks like

17



Figure 15: Cross section sphere-cylinder

Using the order drdpdf notice that

0<6<2nr (66)
Moreover,
0<p< ™
SP=5
The cylinder and sphere intersect when

1
sin?p = = (68)
2
SO -
= — 69
v=17 (69)
Therefore the bounds on r are
0<p<i 0<r<i1
1 (70)
{Z<s@<§ 0<7< sy

and the integral can be written as

oar T el ) L I v e )
/ / / fresin pdrdedd + / / / fresin pdrdedd (71)
o Jo Jo o Jz Jo

With respect to the order dydrdfd we have
0<0<2nm (72)

and the bounds for r are
0<r<l1 (73)

To find ¢ in terms of r, imagine that we fix a sphere of radius r, which in the next figure
is represented as a circle of radius r.

There are two important cases to consider

18
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Figure 16: A couple of circles in the cross section for the sphere-cylinder

The first case is when the radius is less or equal to % (which corresponds to the blue

circle). Here

1 s
0<r< — 0<p<— 74
<r<s Sesg (74)
1

The second case corresponds to the radius being between 7 and 1. Here

1 1
—<r<1 0<p<arcsin [ — 75
aerst ses <ﬁ) (75)

Therefore the integral is

o 1 I 2 1 arcsin ( ——
/ /ﬁ /2 fr?sin pdrdpdd + / / / () fresinpdrdedd  (76)
o Jo 0 o JgJo
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