Problems Integration of Scalar Fields

This material corresponds roughly to sections $15.1,15.2,15.3,12.7,15.4,15.6$ and 16.4 in the book.

Problem 1. Consider

$$
\begin{equation*}
I=\iint_{R} \cos \sqrt{y-x} d A \tag{1}
\end{equation*}
$$

where R is the region determined by the curves $y=x+1, y=x^{2}+x$. Find I using the change of variables $u=x, v=\sqrt{y-x}$

The region of integration on the $x y$ plane is

Figure 1: Region of integration $x y$ plane

We have to find how the region transforms under the change of variables. Notice that

$$
\begin{equation*}
v^{2}=y-x \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
y=v^{2}+x=v^{2}+u \tag{3}
\end{equation*}
$$

which means that the straight line

$$
\begin{equation*}
y=x+1 \tag{4}
\end{equation*}
$$

becomes

$$
\begin{equation*}
v^{2}+u=u+1 \tag{5}
\end{equation*}
$$

In other words, we get

$$
\begin{equation*}
v^{2}=1 \tag{6}
\end{equation*}
$$

which implies

$$
\begin{equation*}
v=1 \tag{7}
\end{equation*}
$$

since $v=\sqrt{y-x} \geq 0$.
The parabola $y=x^{2}+x$ becomes $v^{2}+u=u^{2}+u$ or $v= \pm u$. Therefore the region of integration with respect to the $u v$ plane

Figure 2: Region of integration $u v$ plane
The Jacobian of this change of variables is

$$
J=\left|\begin{array}{ll}
x_{u} & x_{v} \tag{8}\\
y_{u} & y_{v}
\end{array}\right|=\left|\begin{array}{cc}
1 & 0 \\
1 & 2 v
\end{array}\right|=2 v
$$

so the integral is

$$
\begin{equation*}
I=\int_{0}^{1}\left(\int_{-v}^{v} \cos (v) 2 v d u\right) d v=8 \cos (1)-4 \sin (1) \tag{9}
\end{equation*}
$$

where integration by parts was used.

Problem 2. Find the volume of the solid of revolution given by the equation $z^{2} \geq x^{2}+y^{2}$, which is contained inside the sphere $x^{2}+y^{2}+z^{2}=1$

The surfaces $z^{2}=x^{2}+y^{2}$ and $x^{2}+y^{2}+z^{2}=1$ are shown in the next figure

Figure 3: Sphere-cone
We will use spherical coordinates, where the equations become $\cos ^{2} \theta=\sin ^{2} \theta, r=1$ [recall that θ is the angle measured with respect to the z axis]. By symmetry with respect to the angle φ we can look at a cross section [the $x z$ plane] to find the limits with respect to r, θ.

Figure 4: Intersection of the sphere-cone with the plane $y=0$
From this figure we can see that the limits of integration are $0 \leq \varphi<2 \pi, 0 \leq \theta \leq \frac{\pi}{4}$, $0 \leq r \leq 1$. Hence the volume is

$$
\begin{equation*}
V=2 \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{1} r^{2} \sin \theta d r d \theta d \varphi=\frac{4 \pi}{3}\left(1-\frac{1}{\sqrt{2}}\right) \tag{10}
\end{equation*}
$$

Problem 3. Prove Newton's Shell theorem for the gravitational potential. Namely, the gravitational potential created by an object with constant density ρ_{M} and spherically shaped on a point $\left(0,0, z_{0}\right)$ is

$$
\begin{equation*}
\iiint \frac{-G d m}{\sqrt{x^{2}+y^{2}+\left(z-z_{0}\right)^{2}}} \tag{11}
\end{equation*}
$$

where, $d m=\rho_{M} d v o l, G$ is Newton's universal gravitational constant, and the region of integration is the interior of the sphere of radius R centered at the origin. Use spherical coordinates to show that this integral equals

$$
\begin{cases}-\frac{2}{3} \pi G \rho_{M}\left(3 R^{2}-z_{0}^{2}\right) & \text { if } 0<z_{0} \leq r \tag{12}\\ -\frac{G M}{z_{0}} & \text { if } r<z_{0}\end{cases}
$$

We use spherical coordinates. Since $d m=\rho_{M} d V$ we must compute

$$
\begin{equation*}
-G \rho_{M} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{R} \frac{r^{2} \sin \theta d r d \theta d \varphi}{\sqrt{r^{2} \sin ^{2} \theta+\left(r \cos \theta-z_{0}\right)^{2}}} \tag{13}
\end{equation*}
$$

The integrand does not depend on φ so we can integrate this variable first. We can also change the order of integration and find

$$
\begin{equation*}
-2 \pi G \rho_{M} \int_{0}^{R} \int_{0}^{\pi} \frac{r^{2} \sin \theta d \theta d r}{\sqrt{r^{2}-2 r z_{0} \cos \theta+z_{0}^{2}}} \tag{14}
\end{equation*}
$$

Now we make the change of variables $u=r^{2}-2 r z_{0} \cos \theta+z_{0}^{2}, d u=2 r z_{0} \sin \theta d \theta$ and we end up integrating

$$
\begin{equation*}
-\frac{\pi}{z_{0}} G \rho_{M} \int_{0}^{R} \int_{\left(r-z_{0}\right)^{2}}^{\left(r+z_{0}\right)^{2}} \frac{r d u d r}{\sqrt{u}}=-\frac{2 \pi}{z_{0}} G \rho_{M} \int_{0}^{R}\left(\left|r+z_{0}\right|-\left|r-z_{0}\right|\right) r d r \tag{15}
\end{equation*}
$$

We may assume $z_{0} \geq 0$ so we must analyze the cases $0 \leq z_{0} \leq r, r<z_{0}$.
If $0 \leq z_{0} \leq r$ then

$$
\begin{gather*}
\quad-\frac{2 \pi}{z_{0}} G \rho_{M}\left(\int_{0}^{z_{0}}\left(r+z_{0}-\left(z_{0}-r\right)\right) r d r+\int_{z_{0}}^{R}\left(r+z_{0}-\left(r-z_{0}\right)\right) r d r\right) \tag{16}\\
=-\frac{4 \pi}{z_{0}} G \rho_{M}\left(\int_{0}^{z_{0}} r^{2} d r+\int_{z_{0}}^{R} z_{0} r d r\right)=-\frac{4 \pi}{z_{0}} G \rho_{M}\left(\frac{z_{0}^{3}}{3}+\frac{z_{0}}{2}\left(R^{2}-z_{0}^{2}\right)\right) \tag{17}\\
=-\frac{2}{3} \pi G \rho_{M}\left(3 R^{2}-z_{0}^{2}\right) \tag{18}
\end{gather*}
$$

If $r<z_{0}$ then

$$
\begin{equation*}
-\frac{4 \pi}{z_{0}} G \rho_{M} \int_{0}^{R} r^{2} d r=-\frac{4 \pi}{z_{0}} G \rho_{M} \frac{R^{3}}{3}=-\frac{G M}{z_{0}} \tag{19}
\end{equation*}
$$

Problem 4. Consider the Gaussian integral

$$
\begin{equation*}
I_{a}=\iint_{D} e^{-\left(x^{2}+y^{2}\right)} d x d y \tag{20}
\end{equation*}
$$

where D is the disk $x^{2}+y^{2} \leq a^{2}$.
a) Use polar coordinates to show that $I_{a}=\pi\left(1-e^{-a^{2}}\right)$.
b) Find $\int_{0}^{\infty} e^{-x^{2}} d x$ using the value of $\iint_{\mathbb{R}^{2}} e^{-x^{2}-y^{2}} d x d y$.
a) In polar coordinates we find that

$$
\begin{equation*}
I_{a}=\int_{0}^{2 \pi}\left(\int_{0}^{a} e^{-r^{2}} r d r d \theta\right)=2 \pi \int_{0}^{a} e^{-r^{2}} r d r \tag{21}
\end{equation*}
$$

Using the change of variables $u=-r^{2}, d u=-2 r d r$ we must compute

$$
\begin{equation*}
=2 \pi\left(-\frac{1}{2}\right) \int_{0}^{-a^{2}} e^{u} d u=-\left.\pi e^{u}\right|_{0} ^{-a^{2}}=\pi\left(1-e^{-a^{2}}\right) \tag{22}
\end{equation*}
$$

b) Observe that

$$
\begin{align*}
& \iint_{\mathbb{R}^{2}} e^{-x^{2}-y^{2}} d x d y=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}} e^{-y^{2}} d y d x \tag{23}\\
= & \left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)\left(\int_{-\infty}^{\infty} e^{-y^{2}} d y\right)=\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)^{2} \tag{24}
\end{align*}
$$

Taking the limit $a \longrightarrow \infty$ in part a) we obtain

$$
\begin{equation*}
\iint_{\mathbb{R}^{2}} e^{-x^{2}-y^{2}} d x d y=\pi \tag{25}
\end{equation*}
$$

so

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi} \tag{26}
\end{equation*}
$$

Example 5. Find the average value of the temperature $T(x, y, z)=x^{2}+y^{2}-z^{2}$ inside the interior of the region bounded by the surfaces $2 z=x^{2}+y^{2}, x^{2}+$ $y^{2}-z^{2}=1$ and $z=0, z=3$. You can use that the average value of T, denoted $<T>$, is given by

$$
\begin{equation*}
<T>=\frac{\iiint_{R} T d V}{\operatorname{Vol}(R)} \tag{27}
\end{equation*}
$$

Using cylindrical coordinates the equations of the surfaces are $2 z=r^{2}, r^{2}=1+z^{2}$.

Figure 5: Paraboloid-hyperboloid

On the $x z$ plane the cross sections of the surfaces are

Figure 6: Intersection paraboloid-hyperboloid with the $x z$ plane

The limits of integration in cylindrical coordinates become

$$
\begin{equation*}
0 \leq \theta \leq 2 \pi \quad 0 \leq z \leq 1 \quad \sqrt{2 z} \leq r \leq \sqrt{1+z^{2}} \tag{28}
\end{equation*}
$$

First we compute the volume

$$
\begin{align*}
V & =\int_{0}^{2 \pi} \int_{0}^{1} \int_{\sqrt{2 z}}^{\sqrt{1+z^{2}}} r d r d z d \theta=\left.\int_{0}^{2 \pi} \int_{0}^{1} \frac{r^{2}}{2}\right|_{\sqrt{2 z}} ^{\sqrt{1+z^{2}}} d z d \theta \tag{29}\\
& =\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{1}(z-1)^{2} d z d \theta=\left.\frac{1}{6} \int_{0}^{2 \pi}(z-1)^{3}\right|_{0} ^{1} d \theta=\frac{\pi}{3} \tag{30}
\end{align*}
$$

We also need to compute

$$
\begin{gather*}
\iiint T d V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{\sqrt{2 z}}^{\sqrt{1+z^{2}}} r\left(r^{2}-z^{2}\right) d r d z d \theta=\left.2 \pi \int_{0}^{1}\left(\frac{r^{4}}{4}-z^{2} \frac{r^{2}}{2}\right)\right|_{\sqrt{2 z}} ^{\sqrt{1+z^{2}}} d z \tag{31}\\
=2 \pi \int_{0}^{1}\left(\frac{\left(1+z^{2}\right)^{2}}{4}-z^{2} \frac{\left(1+z^{2}\right)}{2}-\frac{(2 z)^{2}}{4}+z^{2} \frac{(2 z)^{2}}{2}\right) d z \tag{32}\\
=\frac{\pi}{2} \int_{0}^{1}\left(1+2 z^{2}+z^{4}-2 z^{2}-2 z^{4}-4 z^{2}+8 z^{4}\right) d z=\frac{\pi}{2} \int_{0}^{1}\left(7 z^{4}-4 z^{2}+1\right) d z=\frac{\pi}{2}\left(\frac{7}{5}-\frac{4}{3}+1\right)=\frac{16 \pi}{30} \tag{33}
\end{gather*}
$$

Therefore the average value

$$
\begin{equation*}
\langle T\rangle=\frac{16 \pi}{10} \tag{34}
\end{equation*}
$$

Problem 6. Consider the region R determined by the surfaces $z=\sqrt{x^{2}+y^{2}}$, $z=2-x^{2}-y^{2}$. Write the integral for the volume of this region using cylindrical coordinates, first using the order of integration $d z d r d \theta$, and then using $d r d z d \theta$. You do not need to compute the value of the integral!

The surfaces are shown in the following figure

Figure 7: Cone-Paraboloid
Using cylindrical coordinates the equations are $z=r, z=2-r^{2}$. With respect to the $x z$ plane the cross section looks like

Figure 8: Intersection cone-paraboloid with the $x z$ plane
Both surfaces intersect when $r=2-r^{2}$, that is, $z=r=1$. To find the integral in the order $d z d r d \theta$ notice that

$$
\begin{equation*}
0 \leq \theta \leq 2 \pi \quad 0 \leq r \leq 1 \quad r \leq z \leq 2-r^{2} \tag{35}
\end{equation*}
$$

So the volume is

$$
\begin{equation*}
V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{r}^{2-r^{2}} r d z d r d \theta \tag{36}
\end{equation*}
$$

To find the integral in the order $d r d z d \theta$ notice that

$$
\begin{equation*}
0 \leq \theta \leq 2 \pi \quad 0 \leq z \leq 2 \tag{37}
\end{equation*}
$$

In this case the r bounds depend on z

$$
\left\{\begin{array}{l}
0 \leq z \leq 1 \quad 0 \leq r \leq z \tag{38}\\
1 \leq z \leq 2 \quad 0 \leq r \leq \sqrt{2-z}
\end{array}\right.
$$

Therefore

$$
\begin{equation*}
V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{z} r d z d r d \theta+\int_{0}^{2 \pi} \int_{1}^{2} \int_{0}^{\sqrt{2-z}} r d z d r d \theta \tag{39}
\end{equation*}
$$

Problem 7. Consider the double integral $I=\int_{0}^{\pi} \int_{\sin x}^{3+\cos (2 x)} f(x, y) d y d x$.
a) Draw the region of integration R.
b) Change the order of integration to $d x d y$. Do not compute the integral.
a) We have $0 \leq x \leq \pi, \sin x \leq y \leq 3+\cos (2 x)$. The region of integration is

Figure 9: Region of integration
b) To change the bounds notice first of all that $0 \leq y \leq 4$. For the bounds in x we must break the region into the pieces determined by the inequalities $0 \leq y \leq 1,1 \leq y \leq 2$, $2 \leq y \leq 4$.

We also use the fact that $\sin (\pi-\alpha)=\sin (\alpha), \cos (2 \pi-\alpha)=\cos (\alpha)$. If we consider $\arcsin \alpha$ as a function with domain between 0 and $\frac{\pi}{2}$ we must have

$$
\begin{gather*}
0 \leq y \leq 1 \quad 0 \leq x \leq \arcsin y \quad \pi-\arcsin y \leq x \leq \pi \tag{40}\\
1 \leq y \leq 2 \quad 0 \leq x \leq \pi \tag{41}\\
2 \leq y \leq 4 \quad 0 \leq x \leq \frac{1}{2} \arccos (y-3) \quad \pi-\frac{1}{2} \arccos (y-3) \leq x \leq \pi \tag{42}
\end{gather*}
$$

Therefore the integral is
$\int_{0}^{1} \int_{0}^{\arcsin y} f d x d y+\int_{0}^{1} \int_{0}^{\arcsin y} f d x d y+\int_{1}^{2} \int_{0}^{\pi} f d x d y+\int_{2}^{4} \int_{0}^{\frac{\arccos (y-3)}{2}} f d x d y+\int_{2}^{4} \int_{\pi-\frac{\arccos (y-3)}{2}}^{\pi} f d x d y$

Problem 8. Consider the integral $I=\iiint_{T} \frac{x y+y^{2}}{x^{3}} d x d y d z$, where T is the region inside the first octant $(x, y, z \geq 0)$ between the plane $x+y+z=2$, the $x y$ plane, and the vertical "walls" determined by the trapezoid given by the equations $x+y=1, x+y=2, y=0, y=x$. As a suggestion, use the change of variables $x=\frac{v}{1+w}, y=\frac{v w}{1+w}, z=u-v$.

First of all the plane $x+y+z=2$ intersects the plane $x y$ when $z=0$, that is, when $x+y=2$. Therefore on the $x y$ plane the region of integration looks like

Figure 10: Trapezoid

Using the change of variables $x=\frac{v}{1+w}, y=\frac{v w}{1+w}, z=u-v$ the line $x+y=1$ becomes $\frac{v}{1+w}+\frac{v w}{1+w}=1$, that is, $v=1$.
Similarly, the line $x+y=2$ becomes $v=2$.
The line $y=0$ becomes $\frac{v w}{1+w}=0$, observe that $v \neq 0$ since $x \neq 0$ so the bound corresponds to the line $w=0$

Similarly, the line $y=x$ becomes $\frac{v}{1+w}=\frac{v w}{1+w}$ or $w=1$.
Finally, the plane $z=0$ becomes $u=v$, while the plane $x+y+z=2$ becomes $\frac{v}{1+w}+\frac{v w}{1+w}+u-v=2$ or $u=2$.

Therefore the bounds end up being

$$
\begin{equation*}
1 \leq v \leq 2 \quad 0 \leq w \leq 1 \quad v \leq u \leq 2 \tag{44}
\end{equation*}
$$

Now we compute the Jacobian

$$
\begin{align*}
& J(u, v, w)=\left|\begin{array}{lll}
x_{u} & x_{v} & x_{w} \\
y_{u} & y_{v} & y_{w} \\
z_{u} & z_{v} & z_{w}
\end{array}\right|=\left|\begin{array}{ccc}
0 & \frac{1}{1+w} & -\frac{v}{(1+w)^{2}} \\
0 & \frac{w}{1+w} & v\left(\frac{1+w-w}{(1+w)^{2}}\right) \\
1 & -1 & 0
\end{array}\right| \tag{45}\\
&=\frac{v}{(1+w)^{3}}\left|\begin{array}{ccc}
0 & 1 & -1 \\
0 & w & 1 \\
1 & -1 & 0
\end{array}\right|=\frac{v}{(1+w)^{2}} \tag{46}
\end{align*}
$$

At the same time,

$$
\begin{equation*}
\frac{x y+y^{2}}{x^{3}}=\frac{y(x+y)}{x^{3}}=\frac{\frac{v w}{1+w}(v)}{\left(\frac{v}{1+w}\right)^{3}}=\frac{w(1+w)^{2}}{v} \tag{47}
\end{equation*}
$$

Therefore the integral we must compute is

$$
\begin{gather*}
\int_{1}^{2} \int_{0}^{1} \int_{v}^{2} w d u d w d v=\int_{1}^{2} \int_{0}^{1} w(2-v) d w d v=\left.\int_{1}^{2}(2-v) \frac{w^{2}}{2}\right|_{0} ^{1} d v \tag{48}\\
\quad=\frac{1}{2} \int_{1}^{2}(2-v) d v=\left.\frac{1}{2}\left(2 v-\frac{v^{2}}{2}\right)\right|_{1} ^{2}=\frac{1}{2}\left(2-\frac{3}{2}\right)=\frac{1}{4} \tag{49}
\end{gather*}
$$

Problem 9. Consider the region determined by the surfaces $x^{2}+y^{2}+z^{2}=4$, $x^{2}+y^{2}=3 z$.
a) Write an integral for the volume of this region using cylindrical coordinates, using the order $d z d r d \theta$.
b) Write the same integral now using spherical coordinates in the order $d r d \varphi d \theta$, where φ represents the angle which starts from the z axis.

The region of integration corresponds to

Figure 11: Region of integration paraboloid-sphere
a) With respect to the cylindrical coordianates $x=r \cos \theta, y=r \sin \theta$ the equation of the sphere becomes $r^{2}+z^{2}=4$, while the paraboloid can be written as $r^{2}=3 z$. A cross section of these surfaces is

Figure 12: Region of integration on the $x z$ plane
Using the order $d z d r d \theta$ we have

$$
\begin{equation*}
0 \leq \theta \leq 2 \pi \tag{50}
\end{equation*}
$$

The surfaces intersect when $r^{2}+\frac{1}{9} r^{4}=4$, that is $r=\sqrt{3}$. Therefore

$$
\begin{equation*}
0 \leq r \leq \sqrt{3} \tag{51}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
\frac{r^{2}}{3} \leq z \leq \sqrt{4-r^{2}} \tag{52}
\end{equation*}
$$

In this way the volume becomes

$$
\begin{equation*}
V=\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} \int_{\frac{r^{2}}{3}}^{\sqrt{4-r^{2}}} r d z d r d \theta \tag{53}
\end{equation*}
$$

b) Using spherical coordinates $x=r \sin \varphi \cos \theta, y=r \sin \varphi \sin \theta, z=r \cos \varphi$, with respect to the order $d r d \varphi d \theta$ we must have

$$
\begin{equation*}
0 \leq \theta \leq 2 \pi \tag{54}
\end{equation*}
$$

From the previous figure we find that

$$
\begin{equation*}
0 \leq \varphi \leq \frac{\pi}{2} \tag{55}
\end{equation*}
$$

To find the bounds for r the surfaces in spherical coordinates can be written as $r=2$, $r^{2} \sin ^{2} \varphi=3 r \cos \varphi$ or $r=\frac{3 \cos \varphi}{\sin ^{2} \varphi}$.

At the same time the surfaces intersect when $2=\frac{3 \cos \varphi}{\sin ^{2} \varphi}$. This last equation can be rewritten as $2\left(1-\cos ^{2} \varphi\right)=3 \cos \varphi$ or $2 \cos ^{2} \varphi+3 \cos \varphi-2=0$, which we rewrite as $(2 \cos \varphi-1)(\cos \varphi+2)=0$. Thus $\cos \varphi=\frac{1}{2}$ or $\cos \varphi=-2$, and since the last one is
impossible we conclude that $\varphi=\frac{\pi}{3}$. Therefore the bounds of integration

$$
\left\{\begin{array}{l}
0 \leq \varphi \leq \frac{\pi}{3} \quad 0 \leq r \leq 2 \tag{56}\\
\frac{\pi}{3} \leq \varphi \leq \frac{\pi}{2} \quad 0 \leq r \leq \frac{3 \cos \varphi}{\sin ^{2} \varphi}
\end{array}\right.
$$

so the volume is

$$
\begin{equation*}
V=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{3}} \int_{0}^{2} r^{2} \sin \varphi d r d \varphi d \theta+\int_{0}^{2 \pi} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \int_{0}^{\frac{3 \cos \varphi}{\sin ^{2} \varphi}} r^{2} \sin \varphi d r d \varphi d \theta \tag{57}
\end{equation*}
$$

Problem 10. Make the change of variables $u=x y, v=\frac{y}{x}$ to find the volume of the solid bounded by the surfaces $z=x+y, x y=1, x y=2, y=x, y=2 x, z=0$ $(x>0, y>0)$.

The region of integration on the $x y$ plane is

Figure 13: Region of integration $x y$ plane
We must do the integral

$$
\begin{equation*}
\iint_{R}(x+y) d y d x \tag{58}
\end{equation*}
$$

With respect to the change of variables we have

$$
\begin{equation*}
1 \leq u \leq 2 \quad 1<v<2 \tag{59}
\end{equation*}
$$

The Jacobian has the property that $J(u, v)=\frac{1}{J(x, y)}$ where

$$
J(x, y)=\left|\begin{array}{ll}
u_{x} & u_{y} \tag{60}\\
v_{x} & v_{y}
\end{array}\right|=\left|\begin{array}{cc}
y & x \\
-\frac{y}{x^{2}} & \frac{1}{x}
\end{array}\right|=\frac{2 y}{x}=2 v
$$

In this way

$$
\begin{equation*}
J(u, v)=\frac{1}{2 v} \tag{61}
\end{equation*}
$$

Since $y=\sqrt{u v}, x=\sqrt{\frac{u}{v}}$ the integral becomes

$$
\begin{gather*}
\int_{1}^{2} \int_{1}^{2}\left(\sqrt{\frac{u}{v}}+\sqrt{u v}\right) \frac{1}{2 v} d u d v=\left.\int_{1}^{2}\left(v^{-\frac{3}{2}}+v^{-\frac{1}{2}}\right) \frac{u^{\frac{3}{2}}}{3}\right|_{1} ^{2} d v \tag{62}\\
=\frac{1}{3}(2 \sqrt{2}-1) \int_{1}^{2}\left(v^{-\frac{3}{2}}+v^{-\frac{1}{2}}\right) d v=\left.\frac{1}{3}(2 \sqrt{2}-1)\left(-2 v^{-\frac{1}{2}}+2 v^{\frac{1}{2}}\right)\right|_{1} ^{2}=\frac{2}{3}(2 \sqrt{2}-1)\left(\sqrt{2}-\frac{1}{\sqrt{2}}\right) \tag{63}
\end{gather*}
$$

Problem 11. Consider the following triple integral

$$
\begin{equation*}
I=\int_{-\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}} \int_{-\sqrt{\frac{1}{2}-x^{2}}}^{\sqrt{\frac{1}{2}-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} f(x, y, z) d z d y d x \tag{64}
\end{equation*}
$$

a) Draw the region of integration.
b) Write I in spherical coordinates, using the order of integration $d r d \varphi d \theta$, and the order $d \varphi d r d \theta$. In both cases θ is the angle that starts from the x axis.
a) The bounds are $-\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}},-\sqrt{\frac{1}{2}-x^{2}} \leq y \leq \sqrt{\frac{1}{2}-x^{2}}, 0 \leq z \leq \sqrt{1-x^{2}-y^{2}}$, and the region of integration is

Figure 14: Sphere-cylinder-plane
With respect to spherical coordinates $x=r \sin \varphi \cos \theta, y=r \sin \varphi \sin \theta, z=r \cos \varphi$ the bounds of the integral can be written as

$$
\begin{equation*}
r^{2} \sin ^{2} \varphi=\frac{1}{2} \quad r=1 \tag{65}
\end{equation*}
$$

So a cross section looks like

Figure 15: Cross section sphere-cylinder
Using the order $d r d \varphi d \theta$ notice that

$$
\begin{equation*}
0 \leq \theta \leq 2 \pi \tag{66}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
0 \leq \varphi \leq \frac{\pi}{2} \tag{67}
\end{equation*}
$$

The cylinder and sphere intersect when

$$
\begin{equation*}
\sin ^{2} \varphi=\frac{1}{2} \tag{68}
\end{equation*}
$$

so

$$
\begin{equation*}
\varphi=\frac{\pi}{4} \tag{69}
\end{equation*}
$$

Therefore the bounds on r are

$$
\begin{cases}0 \leq \varphi \leq \frac{\pi}{4} & 0 \leq r \leq 1 \tag{70}\\ \frac{\pi}{4} \leq \varphi \leq \frac{\pi}{2} & 0 \leq r \leq \frac{1}{\sqrt{2} \sin \varphi}\end{cases}
$$

and the integral can be written as

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{1} f r^{2} \sin \varphi d r d \varphi d \theta+\int_{0}^{2 \pi} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{0}^{\frac{1}{\sqrt{2} \sin \varphi}} f r^{2} \sin \varphi d r d \varphi d \theta \tag{71}
\end{equation*}
$$

With respect to the order $d \varphi d r d \theta$ we have

$$
\begin{equation*}
0 \leq \theta \leq 2 \pi \tag{72}
\end{equation*}
$$

and the bounds for r are

$$
\begin{equation*}
0 \leq r \leq 1 \tag{73}
\end{equation*}
$$

To find φ in terms of r, imagine that we fix a sphere of radius r, which in the next figure is represented as a circle of radius r.

There are two important cases to consider

Figure 16: A couple of circles in the cross section for the sphere-cylinder
The first case is when the radius is less or equal to $\frac{1}{\sqrt{2}}$ (which corresponds to the blue circle). Here

$$
\begin{equation*}
0 \leq r \leq \frac{1}{\sqrt{2}} \quad 0 \leq \varphi \leq \frac{\pi}{2} \tag{74}
\end{equation*}
$$

The second case corresponds to the radius being between $\frac{1}{\sqrt{2}}$ and 1 . Here

$$
\begin{equation*}
\frac{1}{\sqrt{2}} \leq r \leq 1 \quad 0 \leq \varphi \leq \arcsin \left(\frac{1}{\sqrt{2} r}\right) \tag{75}
\end{equation*}
$$

Therefore the integral is

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{0}^{\frac{1}{\sqrt{2}}} \int_{0}^{\frac{\pi}{2}} f r^{2} \sin \varphi d r d \varphi d \theta+\int_{0}^{2 \pi} \int_{\frac{1}{\sqrt{2}}}^{1} \int_{0}^{\arcsin \left(\frac{1}{\sqrt{2 r}}\right)} f r^{2} \sin \varphi d r d \varphi d \theta \tag{76}
\end{equation*}
$$

